当前位置:首页 > 考试类 > 高考 > ln函数的运算法则

ln函数的运算法则

abc留学网2023-04-05高考296

  101小编针对ln函数的运算法则:ln(MN)=lnM+lnN,ln(M/N)=lnM-lnN,ln(M^n)=nlnM,ln1=0,lne=1,注意,拆开后,M,N需要大于0没有ln(M+N)=lnM+lnN,和ln(M-N)=lnM-lnN,lnx是e^x的反函数。

  ln(MN)=lnM+lnN

  ln(M/N)=lnM-lnN

  ln(M^n)=nlnM

  ln1=0

  lne=1

  注意,拆开后,M,N需要大于0

  没有ln(M+N)=lnM+lnN,和ln(M-N)=lnM-lnN

  lnx是e^x的反函数,也就是说ln(e^x)=x求lnx等于多少,就是问e的多少次方等于x.

  一般地,如果a(a大于0,且a不等于1)的b次幂等于N(N>0),那么数b叫做以a为底N的对数,记作logaN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。

 


扫描二维码推送至手机访问。

版权声明:本文由ABC留学网提供发布,如需转载请注明出处。

本文链接:https://www.jumpabc.net/gaokao/77861.html

分享给朋友: